Publications

You can also find my articles on my Google Scholar profile.

Preprints


A multi-view contrastive learning framework for spatial embeddings in risk modelling

Available as preprint via arXiv, 2025

Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.

Recommended citation: Holvoet, F., Blier-Wong, C., & Antonio, K. (2025). A multi-view contrastive learning framework for spatial embeddings in risk modeling. arXiv preprint arXiv:2511.17954.
Download Paper | Download Bibtex

Journal Articles


Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff

Published in North American Actuarial Journal, 2025

Insurers usually turn to generalized linear models for modeling claim frequency and severity data. Due to their success in other fields, machine learning techniques are gaining popularity within the actuarial toolbox. Our paper contributes to the literature on frequency-severity insurance pricing with machine learning via deep learning structures. We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features. We compare in detail the performance of: a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN). The CANNs combine a baseline prediction established with a GLM and GBM, respectively, with a neural network correction. We explain the data preprocessing steps with specific focus on the multiple types of input features typically present in tabular insurance data sets, such as postal codes, numeric and categorical covariates. Autoencoders are used to embed the categorical variables into the neural network, and we explore their potential advantages in a frequency-severity setting. Model performance is evaluated not only on out-of-sample deviance but also using statistical and calibration performance criteria and managerial tools to get more nuanced insights. Finally, we construct global surrogate models for the neural nets’ frequency and severity models. These surrogates enable the translation of the essential insights captured by the FFNNs or CANNs to GLMs. As such, a technical tariff table results that can easily be deployed in practice.

Recommended citation: Holvoet, F., Antonio, K., & Henckaerts, R. (2025). Neural Networks for Insurance Pricing with Frequency and Severity Data: A Benchmark Study from Data Preprocessing to Technical Tariff. North American Actuarial Journal, 29(3):519-562.
Download Paper | Download Bibtex